著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(下)

著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(下)
著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(下)

人工智慧再次跌破大家的眼鏡!!輕鬆破解超難的生物謎題~讓我們一起來看看吧!!(下)

本系列文章為【生物學最大謎團被人工智慧 破解!DeepMind 攻克「蛋白質折疊」奧秘 】的下篇,請點著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(上)看上篇閱讀了解。

人工智慧 AlphaFold 有望突破現有生物.醫學瓶頸

《MIT 科技評論》報導表示,DeepMind 未來希望能將 AlphaFold 投入疾病研究,如瘧疾、嗜睡病、利什曼病等,這些寄生蟲引發的疾病都牽涉到許多未知的蛋白質結構;亦有傳統方法難以辨別的蛋白質,用 AlphaFold 預測可能會特別有效,例如因不容易結晶而很難透過實驗來判斷的膜蛋白。

 

 

 

▲ DeepMind 的科學家與工程師的幕後故事,談論他們如何創建出 AlphaFold。

 

 

 

蛋白質可以成為催發化學反應的酵素、抗擊疾病的抗體或是胰島素等等,美國馬里蘭大學生物科學與生物技術研究所的約翰‧莫爾特博士(John Moult)表示:「蛋白質分子哪怕是微小的重新組合排列,都會對人們的健康產生災難性的影響。因此,要了解疾病和找到新治療手段就要研究蛋白質。」

若 AlphaFold 的預測精準度未來可以再升級,除了可以突破現階段的醫療瓶頸,也能讓人類更能應對新病毒、新疾病,亦能加快新藥開發時程。

AlphaFold 的不足與未來展望

AlphaFold 的確可以協助預測蛋白質折疊的結構,但想準確預測,仍然有諸多限制。

中央研究院生物醫學科學研究所研究員黃明經表示,人工智慧預測的是最終蛋白質摺疊的結果,和自然界蛋白質折疊的軌跡有差異。換句話說,AlphaFold 並不是因為理解過程而解碼這個問題,是靠電腦分析大量資料的技術;AlphaFold 雖然可以預測單一蛋白質結構,但仍無法精準預測較複雜的蛋白質複合體。

故即使 AlphaFold 在 CASP14 中表現驚人,但競賽中仍有約 1/3 的蛋白質是 AlphaFold 尚無法精準預測的。

得知蛋白質的結構只是第一步,目前人工智慧還未能準確地預測蛋白質摺疊後的功能,亦無法完全取代傳統的實驗方法,但可以協助科學家在複雜的實驗數據中縮小找尋結構的範圍,幫助解出困難的結構;AI 也可以學習到更多的結構、得到更準確的預測,所以 AI 和傳統方法是相輔相成的。

未來,有更多重要的問題等著人工智慧與人類一起攜手突破。

 

 

更多人工智慧相關文章請點閱下方連結!!

 

 

 

其他閱讀

人工智慧協助設計新食譜!Sony 將研發超越廚師的美食 AI

人工智慧幫你挑結婚對象?日本政府推「AI 婚仲」對抗少子化

外貌影響面試?放心!新世代人工智慧Tengai面試不再以貌取人

【轉職前端工程師】測試工程師的微痛學習歷程,現在切版、網站開發一把罩!

JK羅琳就快被人工智慧取代寫出最新一集的哈利波特!?

女性不適合學習Python課程?第一位工程師就是女性!()

玩不過人工智慧?前西洋棋冠軍攜手新科技改寫西洋棋!!()

著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(上)

著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(上)
著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(上)

人工智慧再次跌破大家的眼鏡!!輕鬆破解超難的生物謎題~讓我們一起來看看吧!!(上)

因開發出橫掃棋壇的圍棋 AI「AlphaGo」而廣為世人所知的人工智慧實驗室 DeepMind 又傳出捷報──這次他們開發出名叫「AlphaFold」的 AI,解決了困擾生物學界超過 50 年的「蛋白質折疊」難題,以往要精確得知一個蛋白質的完整結構,需要數月、數年甚至數十年的實驗研究,而人工智慧只要花費幾小時就能完成。

推薦閱讀:

且由於蛋白質的結構影響它的 功能,許多疾病又和蛋白質的功能有關,若能解決這個難題,就表示醫療領域可以再進一大步,未來人類將能更了解包括新型冠狀肺炎等疾病,亦能加速新藥物的開發。

蛋白質折疊:生物學最大謎團之一

胺基酸是構成蛋白質的基本單位,蛋白質是由一條氨基酸鏈摺疊成特定三維結構所構成,而蛋白質的功能就取決於這個三維結構,甚至被稱為「理解生命的密碼」。這半個世紀以來,科學家一直試圖掌握不同蛋白質的形狀,以期深入理解它們的作用及引起疾病的方式。然而因為氨基酸鏈摺疊的可能性太多,「蛋白質摺疊」(Protein folding)難題便成為生物學最重大的挑戰之一。

 

 

 

▲ DeepMind 上傳說明影片,解釋何謂「蛋白質折疊」。

 

 

 

自 1972 年,諾貝爾化學獎得主克里斯蒂安.安芬森(Christian Anfinsen)就表示:若要從胺基酸序列預測蛋白質架構,折疊的可能方式會多到無法估計;生物學家塞瑞斯.列文塔爾(Cyrus Levinthal)具體指出,蛋白質折疊有「10 的 300 次方」種可能方式,想靠人工計算來暴力破解,花費時間可能比宇宙存在的時間都長。

這也是為什麼 DeepMind 開發出可以預測蛋白質最終結構的 AlphaFold,會讓全世界震驚於 AI 的突破。

能預測蛋白質結構的 AI 系統「AlphaFold」

DeepMind 表示,AlphaFold 可以藉由胺基酸序列,快速且準確預測蛋白質的三維立體結構。

AlphaFold 的神經網路上添加了注意力機制(Attention Mechanism),並且用資料庫中 17 萬種已知蛋白質結構、6 千萬筆胺基酸序列來訓練,它分析目前已知蛋白質形狀後,就能預測其他蛋白質的形狀,前後只需要花費幾小時、甚至幾分鐘內的時間。

 

生物學最大謎團被 AI 人工智慧 破解!DeepMind 攻克「蛋白質折疊」奧秘
 

▲ AlphaFold 主要神經網絡模型架構。 圖片來源:DeepMind 官網。

 

 

 

DeepMind 團隊表示,可以將蛋白質折疊看作一個「空間圖」(spatial graph),節點表示殘基(residue),邊緣將殘基緊密連接起來。這個空間圖對於理解蛋白質內部的物理交互至關重要。

團隊使用深度學習的端對端(End-to-End)進行訓練,以理解空間圖的結構,並使用進化相關序列、多重序列比對(MSA)和氨基酸殘基的表示等方法來細空間圖。

已於 CASP 大賽中二次奪冠的 AlphaFold

從 1994 年起,John Moult 教授和 Krzysztof Fidelis 教授創立了蛋白質結構預測關鍵評估實驗(Critical Assessment of Structure Prediction,CASP)。CASP 的競賽模式為:主辦單位會選擇近期才經過實驗確認的蛋白質結構,讓參賽團隊測試自己的蛋白質結構預測方法,最後將預測結果與實驗數據進行比對。

因為嚴苛的評比規則,CASP 一直被稱為預測技術評估的「黃金標準」,CASP 也是期望能透過兩年一次的競賽,來廣邀各方投入相關研究,但都沒有找到成效顯著的方法。

直到 AlphaFold 於 2018 的 CASP13 亮相,首次參加國際比賽就已達到有史以來最高精準度,而且第二名的準確率與 AlphaFold 相差甚遠;並且,在近日舉辦的 CASP14 中,AlphaFold 更上一層樓,中位分數為 92.4(滿分100分),而在 AlphaFold 之前的參賽者,中位分數從未超過50。

「這是該研究領域激動人心的一刻。」DeepMind 聯合創始人兼執行長傑米斯‧哈薩比斯(Demis Hassabis)表示。「人工智慧今天已經足夠成熟強大,足以被應用於真正具有挑戰性的科學問題上了。」

同時他也表示,DeepMind 可能要等到明年才能公開詳細實驗內容,團隊也正在準備相關論文,以適時提交給同行進行評審。

 

 

 

人工智慧 AlphaFold 如何突破現有生物、醫學瓶頸?請點著名人工智慧實驗室再度傳出好消息~輕鬆破解蛋白質謎題!!(下)接續看下去!

更多人工智慧相關文章請點閱下方連結!!

 

 

 

其他閱讀

人工智慧協助設計新食譜!Sony 將研發超越廚師的美食 AI

人工智慧幫你挑結婚對象?日本政府推「AI 婚仲」對抗少子化

外貌影響面試?放心!新世代人工智慧Tengai面試不再以貌取人

【轉職前端工程師】測試工程師的微痛學習歷程,現在切版、網站開發一把罩!

JK羅琳就快被人工智慧取代寫出最新一集的哈利波特!?

女性不適合學習Python課程?第一位工程師就是女性!()

玩不過人工智慧?前西洋棋冠軍攜手新科技改寫西洋棋!!()